Hertz Contact Intravascular Lithotripsy (HC-IVL) for Treating Complex Calcific **Coronary Lesions PINNACLE I Clinical Trial** Six-Month and OCT Procedural Imaging Outcomes Johan R. Bennett, MD, PhD UZ Leuven, Belgium On behalf of the PINNACLE I Investigators

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a relevant financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship

Consultant Fees/Honoraria

Grant/Research Support

Ineligible Company

Elixir Medical Corporation; Boston Scientific Corporation; Terumo Medical Corporation; Medtronic; Biotronik

Shockwave Medical

All Relevant Financial Relationships have been mitigated. Faculty disclosure information can be found on the app

PINNACLE I Study Organization

Principal Investigators and Study Centers by Country

Belgium

- Johan Bennett, MD, PhD, Universitaire Ziekenhuizen Leuven (Study Co-PI)
- Stefan Verheye, MD, PhD, ZNA Middelheim (Study Co-PI)
- Bert Ferdinande, MD, Ziekenhuis Oost-Limburg, Campus Sint Jan
- Yoann Bataille, MD, PhD, Jessa Ziekenhuis

Netherlands

- B.J.B. Hamer, MD, Meander Medical Centre
- Valeria Paradies, MD, Maasstad Ziekenhuis
- Pim A.I. Tonino, MD, PhD, Catharina Ziekenhuis

Imaging Core Lab QCA and OCT

Clinical Events <u>Committee</u>

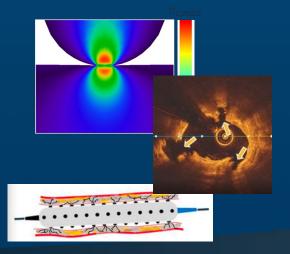
Lithotripsy - From Greek "Breaking (or pulverizing) Stones" (litho- + τρίψω [tripso])

Lithotripsy

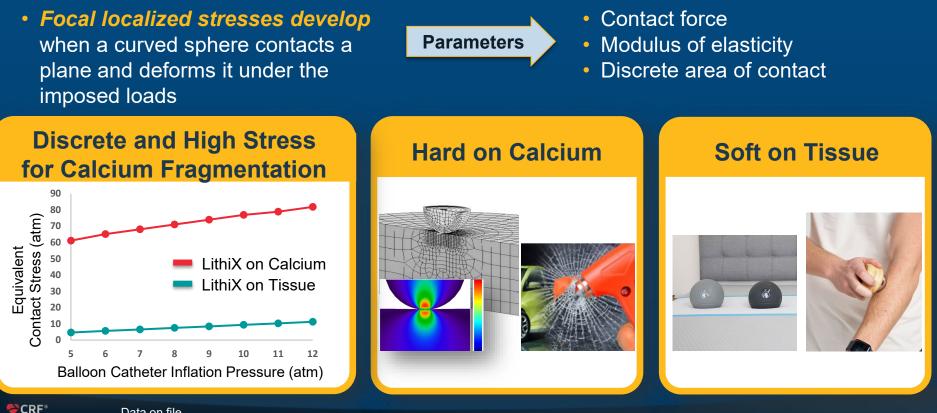
1832- first kidney stone removal procedure by Jean Civiale

- Mechanical
- Extracorporeal
- Laser

CRF[®]


Shockwave Intravascular Lithotripsy


Pressure waves generated inside the balloon to create fractures in adjacent calcium


Hertz Contact Intravascular Lithotripsy

Calcium fractures resulting from amplified discrete focal stresses via Hertz Contact Stress principle

Hertz Contact Stress Mechanism

Data on file

PINNACLE I Trial Design

60 patients enrolled[†] in 7 clinical sites in Belgium and The Netherlands (ITT)

Up to two de novo coronary artery lesions with moderate to severe calcification RVD 2.25 to 3.5 mm, lesion length ≤34 mm

Imaging subgroup (n=32[‡]) OCT at pre-procedure, post-LithiX HC-IVL and final post-stent

Primary effectiveness and safety endpoint (clinical success) Residual stenosis <50% with no in-hospital MACE through hospital discharge

> Primary safety endpoint MACE through 30 days

6-month clinical follow-up Follow-up Completion: 98% (n=59/60)

[†], Included 8 roll-in patients that met the study eligibility criteria.

Study Objective

To assess safety and performance of the

LithiX Coronary Hertz Contact Intravascular Lithotripsy (HC-IVL) Catheter to treat moderate to severely calcified coronary artery lesions by

calcium fragmentation.

[‡], Subjects with OCT images analyzable by the imaging core lab.

Baseline Demographics

Patient characteristics	N=60
Age, years	72.1 ± 6.8
Male	39 (65.0%)
Hypertension	46 (76.7%)
Dyslipidemia	45 (75.0%)
Diabetes mellitus	18 (30.0%)
Prior MI	12 (20.0%)
Prior PCI	17 (28.3%)
Prior CABG	4 (6.7%)
Prior stroke	5 (8.3%)
Current smoker	13 (21.7%)
Renal insufficiency	9 (15.0%)

Clinical presentation	N=60
Acute coronary syndrome§	11 (18.3%)
Chronic/Stable coronary syndrome [‡]	49 (81.7%)

[§], Unstable angina, STEMI or NSTEMI.
[‡], Stable angina or silent ischemia.

Baseline Lesion Characteristics

Angiographic measurements	N=60, L=63	Angiographic measurements	N=60, L=63
Target lesion vessel		RVD, mm	2.79 ± 0.47
LAD	33 (52.4%) 5 (7.9%) 1 (1.6%) 23 (36.5%) 1 (1.6%)	MLD, mm	1.09 ± 0.34
LCx		DS, %	60.66 ± 10.87
Protected LM RCA		Lesion length, mm	14.38 ± 6.80
Ramus		Calcified length, mm	25.11 ± 11.90
ACC/AHA lesion classification (B2/C)	50 (79.4%)	Bifurcation lesion with side branch involvement	9 (14.3%)

N: Total number of subjects.

L: Total number of lesions. Three subjects had 2 lesions treated.

Procedure Characteristics

	N=60		L=63
Procedural duration, min	59.5 (40.5, 76.0)	Pre-dilatation PTCA balloon 1.5mm LithiX*	60 (95.2%) 48 (80.0%) 12 (20.0%)
Fluoroscopic time, min	13.1 (9.9, 20.4)	Number of stents implanted	1.0 (1.0, 1.0)
Number of LithiX HC-IVL used	2.0 (1.0, 2.0)	Post-stent dilatation	57 (90.5%)

Values are n (%) or median (interquartile range). *, 1.5mm LithiX was an option for pre-dilatation.

Excellent Safety and Performance Outcomes

Consistent with IVL Mechanism of Action

Final post-stent	N=60, L=63	N=60, L=63
Angiographic success (main branch, in-lesion) [†]	63 (100.0%)	Clinical success (primary effectiveness and 98.3% (91.1% to 100.0%)
Angiographic complications (main branch)Any severe dissection (Type D-F) Any perforation Any abrupt closure 	$\begin{array}{c} 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \end{array}$	In-hospital and 30-day MACE 10.0 8.0 6.0 4.0 2.0 1.7% 1.7% 1.7% 0.0%
Angiographic outcomes Minimum lumen diameter, mm In-lesion DS, % Acute gain, mm In-lesion DS <50% In-lesion DS <30%	2.69 ± 0.47 12.5 ± 4.5 1.60 ± 0.48 63 (100.0%) 63 (100.0%)	Image: 2.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0 MACE CVD All MI* TVR Performance goal was met Clinical success (primary effectiveness and safety endpoint) rate >80

♥CRF®

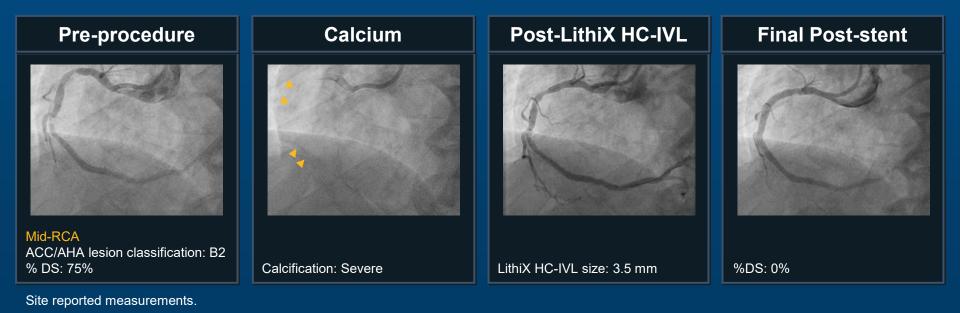
*, One subject with TVMI (peri-procedural, non Q-wave).

[†], Stent delivery success, with residual stenosis <50% and no serious angiographic complications.

Six-month Clinical Outcomes

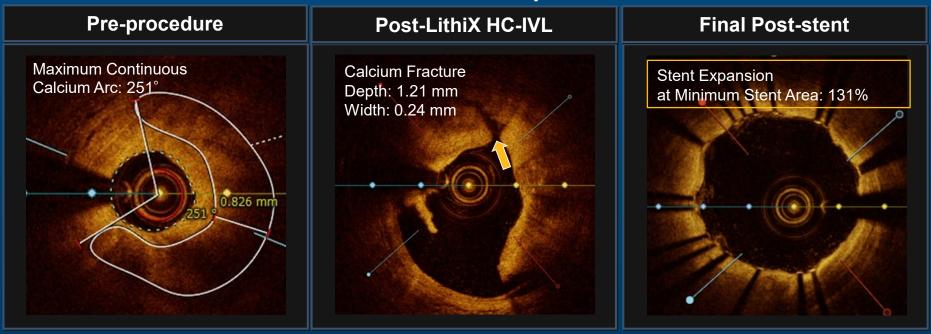
Only three (3) subjects had clinical events through 6-month follow-up

	N=60
Target lesion failure*, %	1/59 (1.7%)
TV-MI*, %	1/59 (1.7%)
CV Death, %	0/59 (0.0%)
CI-TLR, %	0/59 (0.0%)
TVR†, %	1/59 (1.7%)
Non-TVR [†] , %	1/59 (1.7%)
Non-TVMI [†] , %	1/59 (1.7%)
Non-CV Death [‡] , %	1/60 (1.7%)
Stent Thrombosis (definite/probable), %	0/59 (0.0%)


*, One subject had TVMI (peri-procedural, non Q-wave)

[†], One subject had non-TVR, Non-TVMI (spontaneous, non Q-wave) and TVR for non-TLR

[‡], One subject had non-CV death due to acute myeloid leukemia



Eccentric Calcified Lesions Hertz Contact IVL

Patterns of Stent Expansion

Expert Consensus Document of EAPCI*

Previous studies showed that achieving >90% stent expansion was very challenging. Optimal stent expansion target in imaging-guided PCI of >80% is recommended for clinical practice.

*Räber L, et al. Eur Heart J. 2018;39(35):3281-3300

Deep Calcium Fractures Confirm Mechanism of Action of HC-IVL

Pre-procedure Measurements	Eccentric Calcium [#] L=13 Ec		Eccentric Calcium [#] L=13
Minimal lumen area [†] , mm²	2.45 ± 1.00	Calcium fracture, any	11 (84.6%)
A	07 70 + 44 70	1 fracture	3 (23.1%)
Area stenosis [†] , %	67.78 ± 11.72	2 fractures	4 (30.8%)
Calcium length, mm	23.15 ± 6.93	≥3 fractures	4 (30.8%)
Maximum continuous calcium arc, °	184.38 ± 56.42	Fracture depth, mm	0.76 ± 0.28
Maximum calaium thickness, mm	1.32 ± 0.36	Fracture width, mm	0.51 ± 0.23
Maximum calcium thickness, mm	1.52 ± 0.50	Maximum calcium arc at calcium fractures, °	144.18 ± 64.11
Presence of calcified nodule [†]	4 (33.3%)	Minimum calcium angle at calcium fractures, °	125.55 ± 56.27

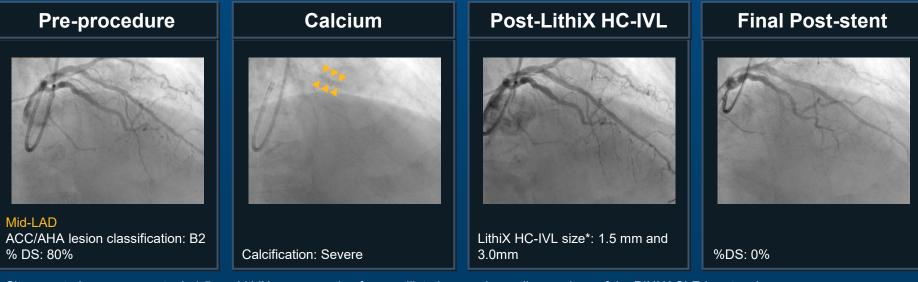
[#], Maximum continuous calcium arc ≤270°. [†], L=12.

CRF^{*}

Optimal Stent Expansion at MLA, MCS and MSA

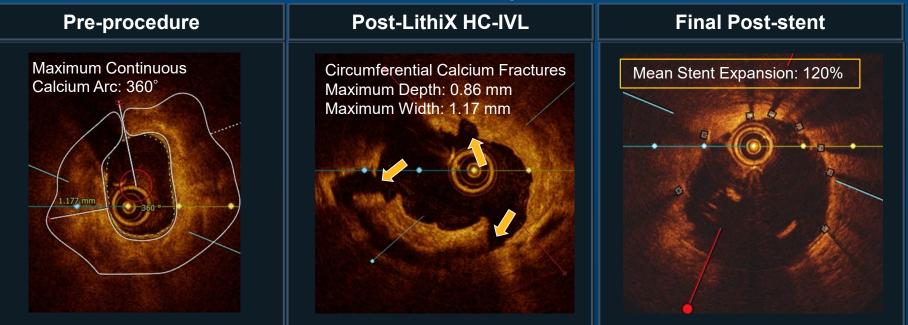
	At Minimum Lumen Area (MLA)		At Maximum Calcium Site (MCS) [†]		At Minimum Stent Area (MSA) [‡]	
Eccentric Calcium [#]	Pre-procedure L=12	Final Post-stent L=10	Pre-procedure L=12	Final Post-stent L=11	Pre-procedure L=10	Final Post-stent L=11
Calcium angle, °	122.75 ± 50.04		133.36 ± 63.09		60.30 ± 45.74	
Maximum calcium thickness, mm	0.85 ± 0.36		1.16 ± 0.45		0.74 ± 0.60	
Area stenosis, %	67.78 ± 11.72	12.19 ± 17.28	34.29 ± 26.15	1.53 ± 4.22	49.91 ± 16.53	15.37 ± 15.49
Lumen area, mm ² and Stent Area, mm ²	2.45 ± 1.00	7.14 ± 2.16	5.02 ± 2.79	8.64 ± 1.73	3.60 ± 1.31	6.30 ± 2.07
Acute area gain, mm ²		3.98 ± 1.74		3.57 ± 2.05		3.14 ± 1.68
Stent expansion*, %		100.97 ± 19.64		97.86 ± 19.28		101.38 ± 23.70

[#], Maximum continuous calcium arc ≤270°.


*, Stent area at MLA, MCS or MSA / Average reference lumen area x 100.

[†], L=11 in lumen area; L=9 in acute area gain.

[‡], L=10 in acute area gain.


Hertz Contact IVL

Site reported measurements. *, 1.5mm LithiX was an option for pre-dilatation per the earlier versions of the PINNACLE I protocol.

Patterns of Stent Expansion

Expert Consensus Document of EAPCI*

Previous studies showed that achieving >90% stent expansion was very challenging. Optimal stent expansion target in imaging-guided PCI of >80% is recommended for clinical practice.

*Räber L, et al. Eur Heart J. 2018;39(35):3281-3300

Deep Calcium Fractures Confirm Mechanism of Action of HC-IVL

Pre-procedure Measurements	Concentric Calcium ^{‡, *} L=19	Post LithiX HC-IVL Measurements	Concentric Calcium ^{‡,} * L=19
Minimal lumen area [†] , mm²	2.12 ± 0.94	Calcium fracture, any	18 (94.7%)
	75 70 . 7 00	1 fracture	2 (10.5%)
Area stenosis [†] , %	75.76 ± 7.38	2 fractures	8 (42.1%)
Calcium length, mm	24.45 ± 6.56	≥3 fractures	8 (42.1%)
Maximum continuous calcium arc, °	317.47 ± 22.51	Fracture depth, mm	0.85 ± 0.36
Maximum calcium thickness, mm	1.24 ± 0.21	Fracture width, mm	0.75 ± 0.29
Maximum calcium unickness, mm	1.24 ± 0.21	Maximum calcium arc at calcium fractures, °	219.11 ± 90.81
Presence of calcified nodule§	5 (29.4%)	Minimum calcium angle at calcium fractures, °	196.94 ± 88.40

[‡], Maximum continuous calcium arc >270°.

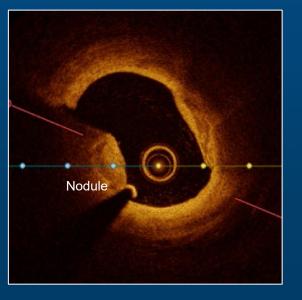
*, One subject has two target lesions with OCT analysis on one target lesion only.

[†], L=18; [§], L=17.

Optimal Stent Expansion at MLA, MCS and MSA

	At Minimum Lumen Area (MLA) †		At Maximum Calcium Site (MCS) [†]		At Minimum Stent Area (MSA) †	
Concentric Calcium [#]	Pre-procedure L=18	Final Post-stent L=19	Pre-procedure L=18	Final Post-stent L=19	Pre-procedure L=18	Final Post-stent L=19
Calcium angle, °	202.39 ± 90.69		261.33 ± 78.96		162.22 ± 91.53	
Maximum calcium thickness, mm	0.72 ± 0.24		0.97 ± 0.23		0.71 ± 0.32	
Area stenosis, %	75.76 ± 7.38	10.75 ± 12.85	40.81 ± 28.21	4.66 ± 6.15	52.61 ± 25.37	13.51 ± 11.11
Lumen area, mm ² and Stent Area, mm ²	2.12 ± 0.94	7.72 ± 2.51	4.76 ± 2.32	8.17 ± 2.58	3.94 ± 2.01	6.73 ± 2.22
Acute area gain, mm²		5.09 ± 1.81		4.03 ± 2.70		3.51 ± 2.04
Stent expansion*, %		100.84 ± 26.93		106.58 ± 28.69		93.95 ± 26.67

[#], Maximum continuous calcium arc >270°.


*, Stent area at MLA, MCS or MSA / Average reference lumen area x 100.

[†], L=18 in acute area gain.

Optimal Stent Expansion in Lesions with Calcified Nodules at MCS

At Maximum Calcium Site (MCS)	Pre-procedure L=9	Final Post-stent L=9
Calcium angle, °	202.56 ± 96.4	
Maximum calcium thickness, mm	1.22 ± 0.34	
Area stenosis, %	35.32 ± 21.34	3.68 ± 5.60
Lumen area [#] , mm ² and Stent Area, mm ²	4.73 ± 1.50	8.02 ± 2.19
Acute area gain [#] , mm ²		3.32 ± 1.54
Stent expansion*, %		102.81 ± 15.99

*, Stent area at MCS / Average reference lumen Area x 100. #, L=8.

- PINNACLE I trial demonstrated the safety and effectiveness of LithiX[™] Hertz Contact IVL for calcium fragmentation in a broad complex range of calcium morphologies:
 - 98.3% met primary safety and effectiveness endpoint (clinical success) and 100% main branch, in-lesion, post-stent angiographic success
 - No stent thrombosis (definite/probable), low target lesion failure rate through 6 months
 - OCT analysis demonstrated effectiveness of the novel mechanism of action:
 - Deep calcium fractures in eccentric and concentric calcified lesions post HC-IVL, confirming the mechanism of action of HC-IVL.
 - Optimal stent expansion (>90% average) achieved at MLA, MCS, MSA in eccentric and concentric calcified lesions including those with calcium nodules
- LithiX[™] HC-IVL offers a safe, effective approach for calcium fragmentation to optimize stent implantation, without a need for external energy source and a simplified IVL workflow and learning curve.

