

HERTZ CONTACT INTRAVASCULAR LITHOTRIPSY

BREAK FREE

TRANSLATING FORCE

INTO ENERGY

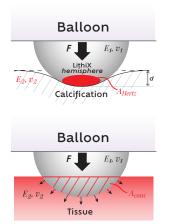
LithiX Hertz Contact Intravascular Lithotripsy (HC-IVL) creates deep, wide cracks in lesions with eccentric, concentric, or nodular calcium without damaging soft tissue.

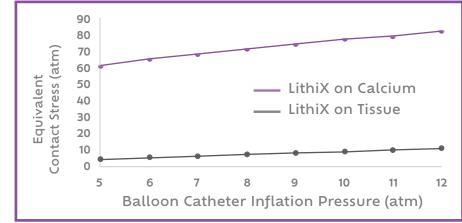
And while we make it look easy, the technology has been crafted and engineered to achieve highly effective outcomes. LithiX operates like a familiar balloon catheter but accelerates and maximizes lithotripsy outcomes without requiring an external energy console.

SAFE AND EFFECTIVE

1.7% in-hospital and 30-day MACE¹ <30% residual diameter stenosis achieved in 100% of lesions¹

SIMPLE


Seamless integration and expedited workflow


VERSATILE

Optimize stent expansion regardless of calcium morphology

SAFE AND EFFECTIVE HARD ON CALCIUM. SOFT ON TISSUE.

Hertz Contact Stress: Discrete and high stress for calcium fragmentation*

*Calculated forces: Hertz Contact stress formula

In the PINNACLE I study, LithiX achieved excellent clinical success.*

100⁰C

Angiographic success¹

No

Angiographic complications¹

Target lesion failure**

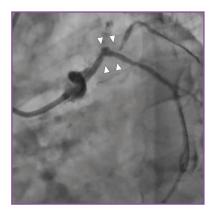
1.700 Out to 6 months 1 CV death

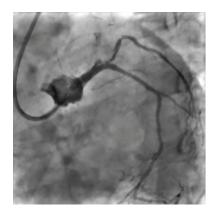
0.0000 Out to 6 months¹

SIMPLE GETTING TO THE LESION SHOULDN'T BE TORTURE.

The votes are in.

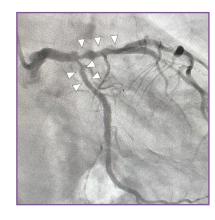
Operator Post-Market Feedback² (n = 172)




System track and flexibility: 4.7 average

Ease of crossing the lesion: 4.5 average

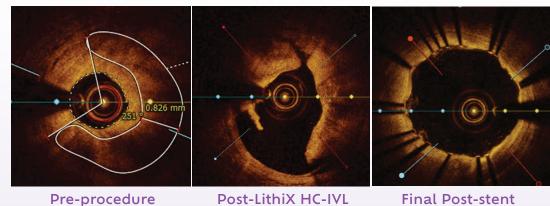
Case Example: LM/LCx severe angulation into and through calcific lesion



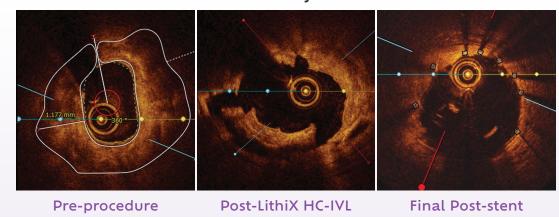
Final Result

Case Example: severe calcification in multiple vessels treated with single LithiX device

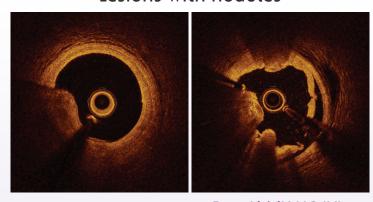
Pre-LithiX



Final Result


VERSATILE LITHOTRIPSY WITHOUT LIMITS

LithiX can be used in lesions with eccentric, concentric, and nodular calcium, producing a multitude of visible cracks.


Eccentric calcified lesions

Concentric calcified lesions

Lesions with nodules

Pre-procedure

Post-LithiX HC-IVL

LithiX provides ultimate freedom and flexibility to consistently achieve maximum stent expansion.

EAPCI Consensus Document: Target minimum stent area (MSA) >80% relative to average reference lumen area following stent optimization³

Eccentric calcified lesions

Final stent expansion At Minimum Stent Area

101.38% | 0.76 mm | 0.51 mm

Fracture depth⁴

Fracture width⁴

Concentric calcified lesions

Final stent expansion

At Minimum Stent Area4

Fracture depth⁴

0.85 mm | 0.75 mm

Fracture width4

Lesions with nodules

Final stent expansion

At Minimum Stent Area⁵

Fracture depth⁵

0.81 mm

Fracture width⁵

Fracture depth and width were measured by an independent core lab of OCT images post-LithiX HC-IVL and prior to stenting.^{4,5}

TECHNICAL SPECIFICATIONS

LithiX HC-IVL Catheter					
Available Balloon Nominal Diameters	1.5, 2.0, 2.5, 3.0, 3.5 mm				
Balloon Nominal Length	14 mm				
Catheter Working Length	140 cm				
Catheter Design	Rapid Exchange				
Distal Outer Shaft OD	2.7 FR / 0.89 mm				
Intermediate Shaft OD	2.5 FR / 0.85 mm				
Hypotube OD	1.95 FR / 0.65 mm				
Guiding Catheter Compatibility	6 French (≥ 0.071 in ID or 1.8 mm ID)				
Guidewire Compatibility	0.014 in or 0.36 mm				
Tip Entry Profile	0.017 in / 0.43 mm				
Crossing Profile	0.046 in - 0.057 in / 1.17 mm - 1.45 mm / 3.5 FR - 4.3 FR				

COMPLIANCE CHART

Inflation	Balloon Outer Diameter (mm)					
ATM	1.5 mm	2.0 mm	2.5 mm	3.0 mm	3.5 mm	
5 [NOM]	1.51	2.06	2.57	2.99	3.59	
6	1.53	2.09	2.61	3.04	3.65	
7	1.55	2.12	2.65	3.09	3.70	
8	1.56	2.15	2.69	3.14	3.76	
9	1.58	2.18	2.72	3.18	3.80	
10	1.59	2.20	2.75	3.21	3.83	
11	1.60	2.22	2.77	3.24	3.86	
12 [RBP]	1.62	2.24	2.79	3.27	3.88	

PRODUCT ORDERING INFORMATION

LithiX Diameter						
1.5 mm	2.0 mm	2.5 mm	3.0 mm	3.5 mm		
DAR1514	DAR2014	DAR2514	DAR3014	DAR3514		

Not all sizes available in all geographies.

References

- 1. Paradies V. TCT 381: Safety and Effectiveness of a Novel Intravascular Lithotripsy Device Using the Hertz Contact Stress Mechanism for Calcium Fragmentation: PINNACLE I Clinical Trial Six-Month Outcomes. Presented at TCT 2024 on behalf of the PINNACLE I Investigators.
- 2. LithiX HC-IVL Post-market Case Survey. Data on file.
- 3. Räber L, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2018.
- 4. Bennett J. TCT 383: Mechanistic Effects of Coronary Hertz Contact Intravascular Lithotripsy (HC-IVL) on Treatment of Calcified Lesions: PINNACLE I OCT Sub-study Procedural Imaging Outcomes. Presented at TCT 2024 on behalf of the PINNACLE I Investigators.
- 5. PINNACLE I Clinical Trial. Data on file.

Notes: *Clinical success is defined as achieving the primary effectiveness and safety endpoint: residual stenosis <50% with no in-hospital MACE. **One subject with TVMI (peri-procedural, non Q-wave)

Elixir Medical Corporation 920 N McCarthy Blvd. Milpitas, CA 95035 USA www.elixirmedical.com

